martes, 29 de enero de 2013

El Plano Cartesiano

¿Qué es el plano Cartesiano?
FUENTE: http://www.profesorenlinea.cl/geometria/Plano_Cartesiano.html

El plano cartesiano está formado por dos rectas numéricas perpendiculares, una horizontal y otra vertical que se cortan en un punto.La recta horizontal es llamada eje de las abscisas o de las equis (x), y la vertical, eje de las ordenadas o de las yes, (y); el punto donde se cortan recibe el nombre de origen.


El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados.

Las coordenadas se forman asociando un valor del eje de las equis a uno de las yes, respectivamente, esto indica que un punto (P) se puede ubicar en el plano cartesiano tomando como base sus coordenadas, lo cual se representa como: P (x, y)

lunes, 28 de enero de 2013

Biografía de Rene Descartes

Rene Descartes

(1596 - 1650)

Fue un Filósofo y matemático francés,se educó en el colegio jesuita de La Flèche. Obtuvo el título de bachiller y de licenciado en derecho por la facultad de Poitiers (1616), y a los veintidós años partió hacia los Países Bajos, donde sirvió como soldado en el ejército de Mauricio de Nassau. 

Rene Descartes experimentó la famosa «revelación» que lo condujo a la elaboración de su método.En 1628 decidió instalarse en los Países Bajos lugar que consideró más favorable para cumplir los objetivos filosóficos y científicos que se había fijado, y residió allí hasta 1649.

En 1637 apareció su famoso Discurso del método, presentado como prólogo a tres ensayos científicos. Descartes proponía una duda metódica, que sometiese a juicio todos los conocimientos de la época, aunque, a diferencia de los escépticos, la suya era una duda orientada a la búsqueda de principios últimos sobre los cuales cimentar sólidamente el saber.
Este principio lo halló en la existencia de la propia conciencia que duda, en su famosa formulación "pienso, luego existo".

El método cartesiano, que Descartes propuso para todas las ciencias y disciplinas, consiste en descomponer los problemas complejos en partes progresivamente más sencillas hasta hallar sus elementos básicos, las ideas simples, que se presentan a la razón de un modo evidente, y proceder a partir de ellas, por síntesis, a reconstruir todo el complejo, exigiendo a cada nueva relación establecida entre ideas simples la misma evidencia de éstas.

Los ensayos científicos que seguían, ofrecían un compendio de sus teorías físicas, entre las que destaca su formulación de la ley de inercia y una especificación de su método para las matemáticas. 

Su filosofía empezó a ser conocida y comenzó a hacerse famoso, lo cual le acarreó amenazas de persecución religiosa por parte de algunas autoridades académicas y eclesiásticas, tanto en los Países Bajos como en Francia.

Descartes es considerado como el iniciador de la filosofía racionalista moderna por su planteamiento y resolución del problema de hallar un fundamento del conocimiento que garantice la certeza de éste, y como el filósofo que supone el punto de ruptura definitivo con la escolástica.





¿Qué es la Geometría Analítica?


¿Qué es la Geometría Analítica?

La rama de la Matemática que tiene como objeto de estudio a las proporciones y singularidades de distintas figuras ubicadas en un plano o en el espacio se define como geometría.
La geometría analítica, es una disciplina que propone analizar las figuras a partir de un sistema de coordenadas y valiéndose de métodos propios del análisis matemático y del ámbito del álgebra.
La geometría analítica pretende obtener la ecuación de los sistemas de coordenadas en función de su lugar geométrico. Por otra parte, esta disciplina permite determinar el lugar geométrico de los puntos que forman parte de la ecuación del sistema de coordenadas.
Un punto del plano que forma parte de un sistema de coordenadas se determina mediante dos cifras, que reciben la denominación de abscisa y ordenada del punto. De esta manera, se logra que todos los puntos del plano estén representados a través de dos números reales ordenados y viceversa (es decir, todo par ordenado de dígitos está relacionado con un determinado punto de ese plano).
Estas características permiten al sistema de coordenadas establecer una correspondencia entre el concepto geométrico de los puntos en el plano y el concepto algebraico de los pares ordenadores de números, sentando las bases de la geometría analítica.
Gracias a esta relación, es posible determinar figuras geométricas planas a través de ecuaciones formuladas con dos incógnitas.
Un claro ejemplo de su aplicación es como se muestra en la siguiente imagen: