lunes, 18 de marzo de 2013

Centros de un triangulo


Altura de un Triángulo:
Uno de los elementos más importantes de un triángulo es su altura. Más propiamente, deberíamos decir "sus alturas", en plural, puesto que un triángulo tiene tres alturas. En efecto, la altura es la menor distancia entre un vértice y el lado opuesto (o su prolongación), por lo que a cada vértice le corresponde una altura. También utilizamos el nombre de altura para referirnos a la recta que pasa por un vértice y es perpendicular al lado opuesto, pues es sobre esta recta sobre la que medimos esa distancia.

http://www.kalipedia.com/kalipediamedia/matematicas/media/200709/26/geometria/20070926klpmatgeo_165.Ges.SCO.png

Mediana de un Triángulo: La Mediana es cada una de las rectas que une el punto medio de un lado con el vértice opuesto. El punto de corte de las tres medianas se llama baricentro.
Baricentro
Mediatriz de un Triángulo: Dados los tres lados de un triángulo, por cada uno de ellos pasa una mediatriz. Las tres mediatrices se cortan en un mismo punto llamado circuncentro.
http://es.static.z-dn.net/files/d33/a0e32fe23034238b217c7f67b17b0f01.jpg
Incentro
El incentro es el centro de la circunferencia inscrita al triángulo, por lo que la distancia a cada uno de sus lados es la misma (el radio de dicha circunferencia). Más concretamente, es el punto de intersección de las bisectrices de cada uno de los ángulos del triángulo (siendo una bisectriz la recta que divide a un ángulo en dos ángulos iguales), por lo que para representarlo gráficamente debemos dibujar las tres bisectrices y localizar el punto de intersección de las mismas. En la imagen siguiente podéis verlo:
Incentro
·         Baricentro
El baricentro (también llamado centroide) de un triángulo es el punto de intersección de las medianas de dicho triángulo (siendo una mediana el segmento que une un vértice con el punto medio del lado opuesto). Por ello, para representar gráficamente el baricentro debemos dibujar las tres medianas y localizar el punto en el que se cortan. Esta figura muestra el baricentro de un triángulo:
Baricentro
·         Circuncentro
El circuncentro de un triángulo es el centro de la circunferencia circunscrita al triángulo, por lo que la distancia a cada uno de sus vértices es la misma (el radio de dicha circunferencia). En concreto, es el punto de intersección de las mediatrices del triángulo (siendo una mediatriz la recta perpendicular a un lado que pasa por el punto medio del mismo). Por tanto, para representar gráficamente el circuncentro dibujamos las tres mediatrices y localizamos el punto de intersección de las mismas. Puede verse el circuncentro de un triángulo en la siguiente imagen:
Circuncentro

·         Ortocentro
El ortocentro de un triángulo es el punto de intersección de las tres alturas del triángulo (siendo una altura el segmento que parte de un vértice y es perpendicular al lado opuesto a dicho vértice). Entonces para representar gráficamente el ortocentro de un triángulo dibujamos las tres alturas y nos quedamos con el punto en el que se intersecan. En esta figura puede verse el ortocentro de un triángulo:
Ortocentro



No hay comentarios:

Publicar un comentario